Materials discussed on 1/11

We have discussed the following.

1. Show that

e o] n+1
N x—n
cO=y [ e

define a meromorphic function on {z : Re(z) > 0} with pole at z = 1 and agrees with
¢(z) on {Re(z) > 1}.

2. Show that for all z where Re(z) € (—1,0),
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Proof. To make thing more rigorous, we extend ( step by step first.
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Noted that we only evaluate at the region in which the convergence is uniform. And

hence there will be no issue on the interchange of limiting process.
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Claim: ((z) can be analytically extended to {z: Re(z) > 0}.

Noted that I'(z) is meromorphic on C. It suffices to show that the Right hand side
above can be extended. From the integral representation, we can observe that ¢t*~!
is integrable for Re(z) > 0. Thus, the only issues arise from (e — 1)~!. From this

perspective, we try to extract its singularity. Considering its power series,
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This suggests us to splits it into
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By Morera’s theorem, the integrability is sufficient to argue the analyticity. For sake

of completeness, let me demonstrate the argument here.

Denote f(z) = —1 + 37, a,z" which is clearly holomorophic function around 0.

(More precisely, it is entire.) We now show that fol f(t)t*=1 dt defines a holomorphic
function on {z : Re(z) > €} for any € > 0.

Clearly, fnll,l f(t)t*=1 dt is holomorphic and it is convergent when n — oco. It suffices

to show that the convergence is uniform locally.
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where C depends on the local maximum of f. Hence we have extended the ((z) to
{Re(z) > 0}.

Claim: ((z) can be analytically extended to {z: Re(z) > —1}.

We consider 0 < Re(z) < 1 first.
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Now we examine each integral.

The first one define a holomorphic function on {Re(z) > —1} by observing — T
et —
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On the other hand, the second integral also defines a holomorphic function on {Re(z) <

1} as we have
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et —1
for some C' > 0, for all ¢ > 1. From this point of view, we can extend ( to
{Re(z) > —1}.

Now if —1 < Re(z) < 0, since [~ t*71dt = —271,
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Then we can use the formula for cot(z) = 1 + 3" | 22 to recover the functional

equation. The rest is direct computation. Try this! O



