Materials discussed on 1/11

We have discussed the following.

1. Show that

$$\zeta^*(z) = \frac{z}{z-1} - z \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{x-n}{x^{z+1}} dx$$

define a meromorphic function on $\{z : Re(z) > 0\}$ with pole at z = 1 and agrees with $\zeta(z)$ on $\{Re(z) > 1\}$.

2. Show that for all z where $Re(z) \in (-1,0)$,

$$\zeta(z) = 2(2\pi)^{z-1}\Gamma(1-z)\zeta(1-z)\sin(\frac{\pi z}{2}).$$

Proof. To make thing more rigorous, we extend ζ step by step first.

Claim:
$$\zeta(z)\Gamma(z) = \int_0^\infty \frac{t^{z-1}}{e^t - 1} dt$$
.

Noted that we only evaluate at the region in which the convergence is uniform. And hence there will be no issue on the interchange of limiting process.

$$\begin{split} \zeta(z)\Gamma(z) &= (\sum_{n=1}^{\infty} n^{-z}) \int_{0}^{\infty} e^{-t}t^{z-1} \, dt \\ &= \sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-t}n^{-z}t^{z-1} \, dt \\ &= \sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-nt}t^{z-1} \, dt \\ &= \int_{0}^{\infty} \frac{t^{z-1}}{e^{t}-1} \, dt, \quad \forall \, z, Re(z) > 1. \end{split}$$

Claim: $\zeta(z)$ can be analytically extended to $\{z: Re(z) > 0\}$.

Noted that $\Gamma(z)$ is meromorphic on \mathbb{C} . It suffices to show that the Right hand side above can be extended. From the integral representation, we can observe that t^{z-1} is integrable for Re(z) > 0. Thus, the only issues arise from $(e^t - 1)^{-1}$. From this perspective, we try to extract its singularity. Considering its power series,

$$\frac{1}{e^z - 1} = \frac{1}{z} - \frac{1}{2} + \sum_{n=1}^{\infty} a_n z^n.$$

This suggests us to splits it into

$$\int_0^\infty \frac{t^{z-1}}{e^t-1}\,dt = \int_0^1 \left(\frac{1}{e^t-1}-\frac{1}{t}\right)t^{z-1}\,dt + \frac{1}{z-1} + \int_1^\infty \frac{t^{z-1}}{e^t-1}\,dt.$$

By Morera's theorem, the integrability is sufficient to argue the analyticity. For sake of completeness, let me demonstrate the argument here.

Denote $f(z) = -\frac{1}{2} + \sum_{n=1}^{\infty} a_n z^n$ which is clearly holomorphic function around 0. (More precisely, it is entire.) We now show that $\int_0^1 f(t)t^{z-1} dt$ defines a holomorphic function on $\{z : Re(z) > \epsilon\}$ for any $\epsilon > 0$.

Clearly, $\int_{n^{-1}}^{1} f(t)t^{z-1} dt$ is holomorphic and it is convergent when $n \to \infty$. It suffices to show that the convergence is uniform locally.

$$\begin{split} \left| \int_{n^{-1}}^{1} f(t) t^{z-1} \, dt - \int_{m^{-1}}^{1} f(t) t^{z-1} \, dt \right| &\leq \int_{m^{-1}}^{n^{-1}} |f(t)| |t^{z-1}| \, dt \\ &\leq C \int_{m^{-1}}^{n^{-1}} t^{Re(z)-1} \, dt \\ &\leq C \frac{t^{Re(z)}}{Re(z)} \Big|_{m^{-1}}^{n^{-1}} \\ &\leq \frac{C}{\epsilon} \frac{1}{n^{Re(z)}}, \end{split}$$

where C depends on the local maximum of f. Hence we have extended the $\zeta(z)$ to $\{Re(z)>0\}$.

Claim: $\zeta(z)$ can be analytically extended to $\{z : Re(z) > -1\}$.

We consider 0 < Re(z) < 1 first.

$$\int_{1}^{\infty} \left(\frac{1}{e^{t} - 1} - \frac{1}{t} \right) t^{z - 1} dt = \int_{1}^{\infty} \frac{1}{e^{t} - 1} t^{z - 1} dt - \int_{1}^{\infty} t^{z - 2} dt$$
$$= \int_{1}^{\infty} \frac{1}{e^{t} - 1} t^{z - 1} dt + \frac{1}{z - 1}$$

Hence, if $Re(z) \in (0,1)$,

$$\int_0^\infty \frac{t^{z-1}}{e^t - 1} dt = \int_0^1 \left(\frac{1}{e^t - 1} - \frac{1}{t} \right) t^{z-1} dt + \int_1^\infty \left(\frac{1}{e^t - 1} - \frac{1}{t} \right) t^{z-1} dt$$
$$= \int_0^1 \left(\frac{1}{e^t - 1} - \frac{1}{t} + \frac{1}{2} \right) t^{z-1} dt + \int_1^\infty \left(\frac{1}{e^t - 1} - \frac{1}{t} \right) t^{z-1} dt - \frac{1}{2z}.$$

Now we examine each integral.

The first one define a holomorphic function on $\{Re(z) > -1\}$ by observing $\frac{1}{e^t - 1} - \frac{1}{t} + \frac{1}{2} = O(t)$ around t = 0.

On the other hand, the second integral also defines a holomorphic function on $\{Re(z) < 1\}$ as we have

$$|\frac{1}{e^t-1}-\frac{1}{t}|\leq \frac{C}{t}$$

for some C>0, for all $t\geq 1.$ From this point of view, we can extend ζ to $\{Re(z)>-1\}.$

Now if -1 < Re(z) < 0, since $\int_{1}^{\infty} t^{z-1} dt = -z^{-1}$,

$$\int_0^\infty \frac{t^{z-1}}{e^t-1}\,dt = \int_0^\infty \left(\frac{1}{e^t-1}-\frac{1}{t}+\frac{1}{2}\right)t^{z-1}dt. \quad = \int_0^\infty \left(\frac{i}{2}\cot(it/2)-\frac{1}{t}\right)t^{z-1}\,dt$$

Then we can use the formula for $\cot(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\frac{2z}{z^2-n^2\pi^2}$ to recover the functional equation. The rest is direct computation. Try this!